Может ли интегральный тест доказать расходимость?
Может ли интегральный тест доказать расходимость?

Видео: Может ли интегральный тест доказать расходимость?

Видео: Может ли интегральный тест доказать расходимость?
Видео: Интегральный признак сходимости числовых рядов - bezbotvy 2024, Ноябрь
Anonim

Пример 1 Определите, сходится ли следующий ряд или расходящийся . Эта функция явно положительна, и если мы увеличим x x знаменатель буду становятся больше, и поэтому функция также уменьшается. В интеграл является расходящийся и поэтому серия также расходящийся посредством Интегральный тест.

Кроме того, e x сходится или расходится?

1/( бывший ) больше или равно 1 / ( бывший +1) (от нуля до бесконечности) Несобственный интеграл ∫∞01 ( бывший ) d Икс является сходящийся а он равен 1, несобственный интеграл ∞01 ( бывший +1) г Икс является расходящийся.

Также можно спросить, что такое несобственный интеграл с примером? An несобственный интеграл это определенный интеграл который имеет один или оба предела бесконечны, или подынтегральное выражение, стремящееся к бесконечности в одной или нескольких точках диапазона интегрирования. Несобственные интегралы не может быть вычислен с использованием обычного Римана интеграл . Для пример , то интеграл.

Во-вторых, что такое конвергенция и расхождение в исчислении?

Серии Конвергенция и расхождение - Определения Серия Σa сходится к сумме S тогда и только тогда, когда последовательность частичных сумм сходится к S. То есть ряд сходится, если существует следующий предел: В противном случае, если предел sk (при k → ∞) бесконечен или не существует, то ряд расходится.

Какое значение имеет 1 бесконечность?

По сути, 1 делится на очень большое число, очень близко к нулю, так что … 1 деленное на бесконечность , если бы вы действительно могли достичь бесконечность , равно 0.

Рекомендуемые: